
MILLIMAN REPORT 

Proxy model validation 
April 2020 

 

 

 

 

 

Michael Leitschkis, DAV 

Russel Ward, FIA               

 



 
 

 

 



MILLIMAN REPORT 

 

Table of Contents  
 

1. INTRODUCTION ............................................................................................................................................... 1 

2. PROXY MODELLING ........................................................................................................................................ 2 

2.1 STEP 1: SELECT THE TARGET VARIABLES ......................................................................................... 3 

2.2 STEP 2: RISK DRIVER SELECTION ....................................................................................................... 3 

2.3 STEP 3: SELECTION OF FITTING SCENARIOS .................................................................................... 4 

2.4 STEP 4: GENERATION OF FITTING DATA ............................................................................................ 5 

2.5 STEPS 5 AND 6: FITTING A MODEL TO THE DATA .............................................................................. 5 

3. VALIDATING THE PROXY MODEL ................................................................................................................. 7 

3.1 RECENT REGULATORY DEVELOPMENTS ........................................................................................... 7 

3.2 VALIDATION OVERIEW ........................................................................................................................... 8 

3.3 REASONABLENESS TESTS ................................................................................................................... 9 

3.4 APPLICATION TESTS............................................................................................................................ 10 

3.5 IN-SAMPLE TESTS ................................................................................................................................ 13 

4. ORGANISING AND PRESENTING THE RESULTS ....................................................................................... 17 

 

 

ACKNOWLEDGEMENTS 

The authors would like to thank Matthijs Otten for his contribution to this paper. 

 



MILLIMAN REPORT 

Proxy model validation 1 April 2020  

 

1. Introduction 
Proxy modelling has now been in use across the UK and Europe for several years, principally in support of 

Solvency Capital Requirement (SCR) calculations within Solvency II (SII) internal models.  

A key feature of a proxy model is the ability to perform capital calculations very quickly and efficiently relative to 

evaluations from the full cash flow or “heavy” model. This makes it feasible to develop loss distributions based 

upon hundreds of thousands of risk scenarios even for complex business with embedded guarantees. 

The quid pro quo, as the name “proxy model” suggests, is that these models approximate the results that would 

be generated from the “heavy” model. As such, a key element in the proxy modelling process is to validate the 

model and thus understand just how good the approximation really is.  

Market practice in the area of validation can vary quite markedly, as a recent survey of UK internal model firms by 

the Prudential Regulation Authority (PRA)1 demonstrated. We are aware this has generated some discussion in 

the industry and over time we envisage a degree of convergence and also a general raising of the bar. 

The aim of this paper is firstly to provide a brief introduction to proxy modelling, and then to contribute to the 

current debate around validation via a succinct discussion of a number of the tests that might be contemplated 

and finally an illustration of a potential “validation dashboard.” 

  

 

1 PRA (14 June 2019). Proxy Modelling Survey: Best Observed Practice. Retrieved 20 March 2020 from  

https://www.bankofengland.co.uk/-/media/boe/files/prudential-regulation/letter/2019/proxy-modelling-survey-best-observed-practice.pdf. 

https://www.bankofengland.co.uk/-/media/boe/files/prudential-regulation/letter/2019/proxy-modelling-survey-best-observed-practice.pdf
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2. Proxy Modelling 
Concisely, the aim of a proxy model is to capture the essential dynamics of the variable of interest (the 

dependent variable) via a relatively simple function including the key drivers of the variable’s behaviour (the 

independent variables). In this paper, we focus on proxy models developed by fitting curves, typically polynomial 

functions, using regression techniques which represent the dominant industry approach at present.  

In practice, different techniques are in use to achieve the objective, but the core process is common and 

proceeds as shown in Figure 1. 

FIGURE 1: STEPS IN THE PROXY MODEL CALIBRATION PROCESS 

 

Having set the scene, we will now explore the above process in more detail in the context of our favoured 

approach—Least-Squares Monte Carlo (LSMC). This is, of course, not the only approach available and so we will 

compare and contrast LSMC with the widely used approach of manual curve fitting (MCF). 
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2.1 STEP 1: SELECT THE TARGET VARIABLES 

Objective: To select the variables whose behaviour is to be approximated. In an insurance setting, the principal 

use case of a proxy model is often to assess required capital and so the Own Funds / Net Asset Value (NAV) will 

be a key target variable. In support of these calculations though we may need to estimate other quantities. Thus, 

models may be required to estimate items such as the value of liabilities (e.g., the BEL under Solvency II) and the 

present value of shareholder transfers associated with profit sharing. For the enthusiastic proxy modeller, there 

may be a temptation to go still further and fit models to quite granular breakdowns of balance sheet items. Such 

an approach may well yield additional information about the behaviour of the balance sheet under stress 

conditions but the counterweight is a potentially significant increase in the complexity, time and cost of production 

and the risk of accumulating errors. If the NAV results from the outcome of, say, six proxy model results, then, 

while the accuracy of each may be acceptable in isolation, the accumulated errors across all six may not.   

The other aspect of granularity relates to the structure of the firm and the associated need to fit and validate 

proxy models across different entities, funds and lines of business. 

2.2 STEP 2: RISK DRIVER SELECTION 

Objective: Determine the explanatory variables to be included in the model. These are the risk drivers 

collectively responsible for determining changes in the target variables being modelled, e.g., the NAV or BEL. 

Examples of typical risk drivers are: 

 Interest rates, often modelled as three principal components (PCs) 

 Credit spreads  

 Index returns on a range of asset classes such as domestic and international equities 

 Inflation, sometimes modelled as two PCs 

 Foreign exchange (FX) rates 

 Volatilities for interest rates and index returns 

 Lapse rates 

 Mortality rates, mortality improvements  

 Morbidity rates  

 Expenses  

 Management actions  

2.2.1 Factors to consider in selecting risk drivers: 

1. Risk drivers should have a material impact on the target variables—including minor risk drivers adds to the 

complexity of the proxy model but may yield little benefit in terms of overall explanatory power. Furthermore, 

adding extraneous risk drivers will tend to increase the volume of data required, which pushes up production 

times and costs. 

2. Risk driver behaviour—for a curve to be appropriate to describe a risk driver’s behaviour, the relationship 

between the target variable and risk driver should be continuously differentiable. 

3. Risk driver relationships—avoid including risk drivers which exhibit a high degree of co-dependence with 

other risk drivers. Including such risk drivers adds little to the explanatory power of the data and can obscure 

key relationships when fitting the model. 

 

  

LSMC vs. MCF 

The considerations vary little between the methods, but risk driver proliferation can be a 

particular challenge for MCF due to the manual nature of the process and consequent 

increase in time and effort required. 
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2.3 STEP 3: SELECTION OF FITTING SCENARIOS 

Objective: Determine the values of the various risk drivers that will be used in the fitting process. For example, if 

equity total return is a risk driver, then what realised values of that do we use to fit our model? 

Terminology: 

Outer scenario: Represents a realisation of risk driver outcomes (univariate, e.g., equity return +10%, or 

multivariate, e.g., equity return + 10% and nominal yields + 100 bps and mortality up 5%). 

Inner scenario: A risk-neutral scenario path, conditioned upon the outer scenario characteristics, used for Monte 

Carlo valuation of business with embedded options and guarantees. 

FIGURE 2: HOW LSMC AND MCF DIFFER IN USE OF THE AVAILABLE CALIBRATION BUDGET 

 

This step exhibits a marked difference between LSMC and MCF: 

 

  

LSMC vs. MCF 

LSMC 

- Outer scenarios used are multivariate and derived automatically to provide an even 

coverage of the multidimensional risk space. To achieve this, low-discrepancy sampling 

techniques are used, e.g., Sobol numbers. 

- Scenario selection is defined by the risk drivers used and simulation budget—no expert 

judgement is needed in the selection process. 

- Use of few inner (risk-neutral) scenarios allows the simulation budget to be more 

focused on the outer scenarios, enhancing the coverage of the risk space. 

MCF 

- Outer scenarios are manually selected with the focus on key individual sensitivities and 

cross-terms—this provides flexibility to target specific scenarios but requires 

considerable expert judgement. 

Outer scenario numbers are usually constrained due to the need to run, say, 1,000 inner 

simulations for each point—even allowing for this, total simulation budget may exceed that 

required for LSMC. 
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2.4 STEP 4: GENERATION OF FITTING DATA 

Objective: Produce observations of the target variables as the risk driver values are changed. This is another 

part of the process where LSMC and MCF differ significantly. In short: 

 

The different approaches adopted by LSMC and MCF result in process variations as described in Figure 3. 

FIGURE 3: FITTING DATA GENERATION WITH LSMC AND MCF  

LSMC 

 

MCF 

 

* Note – the simulation budgets used here are illustrative only  

2.5 STEPS 5 AND 6: FITTING A MODEL TO THE DATA 

Objective: Select the type of function, e.g., polynomial, select basis functions and calibrate coefficients.  

Type of function—polynomials are often employed as they offer considerable flexibility to match the fitted function 

to the behaviour of the target variable(s). However, it is important that the appropriateness of this choice is 

checked. For example, by running full heavy model stresses for different levels of the key risk drivers and plotting 

the results, results showing discontinuities or other materially non-smooth behaviour should be investigated and 

may require an alternative approach.   

In terms of fitting a model to the calibration data, both LSMC and MCF typically use regression techniques to 

derive basis functions and coefficients that deliver a good fit to the input data. Here again, though, the 

approaches differ quite markedly in the mechanics of how this is achieved. 

  

Outer scenario 
definitions

25,000 automatically 
generated 

ESG Rebasing
Single base ESG 

calibration 
automatically 

adjusted 25,000 
times

Run Cash-
flow “heavy 

model”

For 250,000 
sims

Sampling
Automatic 
random 

selection of 10 
risk-neutral 

paths / 1000 

Outer scenario 
definitions

250 manually defined  

ESG 
Recalibration

Full recalibration 
performed 250 

times

Run Cash-
flow “heavy 

model”

For 250,000 
sims

No sampling

Full 1,000 
risk-neutral 

paths

LSMC vs. MCF 

 

 

 

 

 

 

 

* Note that there is no loss of accuracy for deterministically valued business.  

LSMC 

Employs a rich set of risk driver observations 

BUT 

Uses inaccurate estimates* of the results for 

each individual observation 

 

MCF  

Uses a much more limited set of risk driver 

observations 

BUT 

Each observation is of similar accuracy to 

a normal valuation result  

 



MILLIMAN REPORT 

Proxy model validation 6 April 2020  

FIGURE 4: LSMC MODEL SELECTION 
LSMC 

 

Under LSMC, an automated model selection procedure is used to fit the curve. The starting point is the simplest 

relationship possible—a constant one. Thereafter, the procedure determines a feasible set of additional 

candidate terms. As indicated in Figure 4, the feasible set considers the simplest terms first before permitting 

more complex ones (higher powers, cross-terms) and then selects the extra term that provides the greatest 

improvement in the fit as evidenced by a measure such as the Akaike information criterion (AIC). The risk of 

including too many terms (overfitting) is mitigated using techniques such as AIC which apply a penalty for each 

extra term added. The curve is then refitted with the new term included and the process repeated. This 

algorithmically driven approach avoids the need for expert judgement as to the “best” model structure. 

FIGURE 5: MCF MODEL SELECTION 

MCF 

 

Under MCF, judgement is required in selecting the fitting points to use for each risk driver included. The number 

and positioning of these points can be critical to the quality of the fitted curve. In particular, we note that no 

information is available to guide the fit outside the range of selected points, e.g., in Figure 5, to the right of the 

final point for risk driver 2. LSMC also requires a calibration boundary to be set, but under this approach 

scenarios can be populated up to the boundary for all risks automatically. Under MCF a deliberate decision is 

required to allocate fitting points at the extremes for all risks and there may be insufficient scope in the scenario 

budget to permit that which can then result in a greater level of extrapolation risk. 

Furthermore, judgement is required in selecting the basis functions to be used in each step of the fitting process 

and in selecting the cross-term dependencies to include in the model. 

The remainder of the paper is now devoted to Step 7—validating that the proxy model derived is fit-for-purpose. 

Automated Model Selection & Fitting

Risk Driver 1 Risk Driver 2
Additional basis 
functions for 
remaining univariate 
risk drivers and 
selected key cross 
dependencies

Manual incremental selection and fitting with iteration
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3. Validating the proxy model 

3.1 RECENT REGULATORY DEVELOPMENTS 

FIGURE 6: PRA PROXY MODEL SURVEY AND FEEDBACK 

 

In May 2018, the PRA’s Proxy Modelling specialism issued a survey to a sample of 11 life insurers with a proxy 

model. They designed the survey questions to capture each firm’s modelling process along with each firm’s views 

of best practice. The PRA then compared approaches across firms, and considered the input provided by 

consultancies and other National Supervisory Authorities to identify the “best observed practice” among the 

survey responses.2  

With regard to proxy model validation, the feedback noted that firms should consider all uses of the proxy model 

when undertaking validation. As different applications may draw on different parts of the overall loss distribution, 

it is important to ensure the model fit is adequate across all areas of use. 

The survey, not unreasonably, placed a good deal of weight on validation activities, which were divided into  

three areas: 

 In-sample testing, restricted to the data used to calibrate the proxy model and performed during the fitting 

process. The PRA noted a number of tests in use by firms most related to verifying the assumptions which 

underpin ordinary least squares (OLS) regression models. 

 Out-of-sample testing, addressing the comparison of proxy model against “heavy” model results for stresses 

and scenarios that have explicitly not been used in the calibration process. The PRA focused on the need for 

firms to demonstrate the adequacy of all of the following: 

− The overall number of scenarios used in light of business and model complexity, in particular the number 

of risks included. 

− Their coverage in terms of spanning all areas of the loss distribution relevant to use cases of the model.  

− Their coverage in terms of the nature of the scenarios tested, e.g., univariate tests of key risks, bivariate 

tests of key risk interactions and full multivariate combinations including many or all risks. 

The PRA felt that best observed practice was to select some scenarios using automated judgement-free 

techniques, but supplementing them with additional points informed by an understanding of the business.   

 Other testing, noted a wider use of out-of-sample data in some areas repeating in-sample tests but also 

considering areas such as the ability of the proxy model to rank risk scenarios consistently with the “heavy” 

model.  

As noted above, the PRA tended to align the timing of in-sample testing activity with the calibration process 

itself but that is really an artefact of the approach taken. In a manual curve fitting world, the timing distinction 

makes sense but in a world of automated data-driven calibration, as under LSMC, such testing can simply be 

included within the suite of validation information delivered by the production process.  

Having captured the approaches being taken by a number of firms, the full list of possible tests is quite long. 

This provides a really useful starting point for firms to consider their own validation processes and assess 

whether they have any significant gaps. However, some of the tests have similar aims and some will be more 

relevant than others to particular firms. Judgement is therefore required in selecting a validation framework 

and range of tests that provides the required comfort over the proxy model’s fitness for purpose while enabling 

validation outcomes to be clearly articulated to stakeholders.  

 

2 PRA, Proxy Modelling Survey: Best Observed Practice, op cit. 
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3.2 VALIDATION OVERIEW 

Similarly to the PRA, we divide the validation of the proxy model into three areas, though our segmentation is 

slightly different. In the remaining sections of this paper we illustrate a validation for a single fund based on a 

combination of realistic results from an LSMC calibration alongside some simplified examples for brevity. 

Reasonableness tests: The features of the proxy model should be consistent with the expected behaviour of the 

underlying book of business. For example, if our knowledge tells us to expect a particular set of interactions 

between the risks then we should check that our proxy model includes the cross-terms reflecting these 

relationships. At a more basic level, we should also check that our model delivers plausible relationships between 

the target variable outcome and varying stresses of the explanatory risks—it is a simple matter to verify our proxy 

model exhibit's reasonable behaviour. 

We place this category of tests first within the overall validation framework on the basis that, unless the proxy 

model’s behaviour is demonstrably reasonable, it is hard to place much confidence in the output. 

Application tests: In calculating the SCR under a Solvency II internal model via LSMC, we develop a full loss 

distribution via the evaluation of the change in NAV across literally hundreds of thousands of scenarios, each 

representing a realisation of the risk drivers included in the proxy model. How comfortable we are with the 

reasonableness of the results comes down to addressing the question, “how accurately does the proxy model 

estimate results for data points that have played no role in its calibration?” The application type tests are critical in 

framing the answer and include: 

 So-called out-of-sample tests which compare results from the heavy model with those from the proxy model.  

 Tests to verify that the proxy model has not been overfitted.3 

In-sample tests: These tests consider the relationship between the fitted model and the data used to perform the 

fit. In common with many statistical models and techniques, OLS regression comes with a set of assumptions 

forming the ideal conditions for its application. In real-world applications, our experience is that these idealised 

conditions will not be perfectly met. Nevertheless, we find that curves can still be fitted using LSMC which provide 

an acceptably accurate approximation to the “heavy” model results. Having said this, we do not dismiss in-

sample tests as, in our view, they can provide helpful diagnostic information that may highlight issues for further 

investigation and ultimately lead to improved calibrations in the future.   

Parameter calibration: For completeness, we also note that investigations are needed to establish a suitable set 

of parameters for the calibration. Such parameters will include: 

− The maximum order of univariate and cross-terms permitted  

− The maximum number of terms to be included in the fitted function 

− The overall calibration budget to be used and its division between outer and inner scenarios 

Investigations are required to optimise these parameters upon initial implementation. Thereafter, it should only be 

necessary to review them in the event of a marked change affecting the regression problem, for example a 

significant change in the “heavy” model such as the inclusion of extra risk drivers or a material shift in financial 

conditions expected to impact the significance of the various risks and their interrelationship. Given the different 

nature of these investigations, we do not cover them further in this paper. 

In the remainder of this section we explore a number of tests that can be applied to address our three validation 

areas. To be clear though the tests we cover are in no way an exhaustive list and we recognise that the selection 

of tests adopted represents another area of expert judgement. 

  

 

3 Overfitting occurs when a model’s parameters include not only the genuine relationships in the underlying data but also spurious ones arising 

solely from noise. The noise element will not be replicated in data outside the fitting set and thus its inclusion reduces the ability of the model to 

accurately estimate results for scenarios outside the fitting set. 
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3.3 REASONABLENESS TESTS 

3.3.1 Initial analysis of the fitted model (“sniff test”) 

Even before a proxy model is fitted, there will be a body of knowledge within any firm regarding the hierarchy of 

risks to which any book of business is exposed and also the key interrelationships between those risks. 

When a proxy model is fitted, a first step in checking its reasonableness is to consider the list of basis functions 

selected and their significance and check this against prior expectations. For example, we may know that a 

particular book of business has a significant exposure to the level of interest rates, with rising rates expected to 

reduce the NAV. The same book may also be exposed to the take-up rate of guaranteed annuity options (GAOs), 

where increasing take-up pushes up the liabilities and reduces the NAV. We may know that there is an interplay 

between the two risks such that if interest rates fall the GAOs become more valuable and the impact of changes 

in take-up rates increases. In such a case, it would be reasonable to immediately look for the following elements 

in our fitted model: 

 Univariate terms in the interest rate and GAO take-up rate risk factors are present in the polynomial. 

 The coefficients and order of selection of those terms denote a significance consistent with expectations. Note 

that, for an automated model selection algorithm as used in LSMC, the most significant terms are selected 

first. In the example being considered, if we found the univariate linear term in the risk “interest rate PC1"4 had 

been selected 133rd from 200 terms, then that would immediately feel wrong. 

 The signs of coefficients should be consistent with the definition of the risk factors and the direction of their 

expected relationship with the NAV. Assuming we have defined increases to interest rates to be positive and 

falls to be negative then we expect to see a negative coefficient on the linear term in “interest rate PC1.” 

 The presence of a cross-term(s) capturing the expected interaction between the level of interest rate and GAO 

take-up rate risk factors.   

The data required to undertake the analysis above should be readily available as an output from the fitting process. 

3.3.2 Graphical analysis 

Taking things a step further, we can chart the modelled relationships between our NAV and the key risk factors 

which influence its variation. 

Analysis of univariate risks can be undertaken using standard 2D charts while analysis of key bivariate 

relationships can be undertaken using more complex 3D charts. 

FIGURE 7: GRAPHICAL EXPLORATION OF MODELLED RELATIONSHIPS 

    

  

 

4 To simplify modelling, interest rate risk is often modelled as a set of principal components (PCs), of which PC1 is typically taken to represent the 

overall level of interest rates. 
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The left chart in Figure 7 shows the univariate relationship between NAV and the level of interest rates, with NAV 

falling as rates increase. The right-hand chart then illustrates how the bivariate combination of interest rate level 

and GAO take-up rate impacts the NAV. Again we can see that NAV falls as rates rise but also that the impact of 

GAO take-up is far more marked at low rates than at high rates. In this simple example we can readily conclude 

that the behaviours exhibited by the fitted model are consistent with our ex ante expectations.  

3.3.3 Analysis of the change in model form 

A final test in the reasonableness section is to consider how the form of the fitted model has evolved over time. 

By the form of the model we mean the selection of basis functions that make it up such as that shown in Figure 8. 

EXHIBIT 8: DECOMPOSITION OF FITTED CURVE INTO BASIS FUNCTIONS 

 

The information provided in Figure 8 enables us to compare the form of models fitted at different times such as 

year-end (YE) 2019 versus YE2018. In particular, we can consider: 

 How many functions are common to both models?  

 How consistent is the selection order for the common functions? 

 How many new functions have been added and what are their characteristics? 

 How many functions have been dropped and what are their characteristics? 

Armed with this information, the changes can now be considered for consistency with what we know about the 

influences on the book of business during the last year. If at YE2018 this book had little equity exposure but 

during 2019 that had been significantly increased, then it would not be surprising to find terms added involving 

the equity return risk factor. If during the year a large block of protection business had been sold, then we might 

expect to see the importance of terms involving mortality risk factors decline and remaining terms selected later, 

with some possibly removed altogether. On the other hand, if there had been little change to the business or to 

financial conditions over the past year, then it would be surprising to see significant changes to the model form, 

and this would warrant further investigation. 

Clearly, this is not a completely scientific exercise and sound knowledge of the business is required along with a 

good slug of judgement. Nevertheless, the exercise can provide comfort over the changes observed and highlight 

any that simply don’t make sense and so require further investigation, which might start by considering any 

changes in the “heavy” model behaviour for relevant stresses. 

3.4 APPLICATION TESTS  

3.4.1 Out-of-sample tests 

The premise of the main application test is a straight comparison of the proxy model estimate versus the "heavy" 

model estimate—the difference being calculated for every test scenario executed. In tabular form the results 

might look like Figure 9. 

Function Selection Order

Risk Power Risk Power

1 R1 1 1

2 R4 1 2

15 R6 2 15

16 R1 1 R9 1 16

Risk Factor1 Risk Factor2
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FIGURE 9: ILLUSTRATIVE OUT-OF-SAMPLE TEST RESULTS 

 

 

Inclusion of the loss distribution percentile implied by the "heavy" model NAV of each scenario can be helpful in 

demonstrating the coverage of the test set, in particular highlighting any gaps. 

The “Error” is included to enable the investigation of the degree of randomness in the direction of the errors. A 

strong tendency to observe runs of positive or negative results indicates some systematic bias in the proxy model 

which should then be investigated. To provide a quantitative assessment, a statistical test (such as the runs test) 

could be undertaken to test the hypothesis that the sequence of positive or negative errors is random. 

Assuming our sequence of positive or negative errors is random, it does not concern us which direction any 

particular error is in. Hence, the absolute value of the error “Abs Error” is used to compare with the tolerance 

level set to determine the test outcome. This is straightforward enough but the setting of an appropriate tolerance 

threshold is a nontrivial task. 

Under an LSMC approach, calibration scenarios are devised to cover the entire risk space evenly and all such 

scenarios carry equal weight in the fitting process. Given this, ex ante, there is nothing to suggest the fitted curve 

will be any more or less accurate in any particular area of the risk space—this is consistent with the adoption of a 

constant error tolerance across the set of validation tests. 

Beyond that, some additional sophistication could be introduced by examining the residual variability of the validation 

scenarios (for stochastically valued blocks of business, they are typically calculated using say 1,000 to 2,000 risk-

neutral simulations—they are themselves estimates). As an example, we note that the level of interest rates often plays 

a significant role, as the scale and interest rate sensitivity of liabilities with embedded long-term guarantees will typically 

increase as interest rates fall. In line with this, there is a tendency for validation points reflecting extreme downward 

stresses to rates to exhibit greater levels of standard error—in our experience, this can be over 50% higher than points 

reflecting rates around the base valuation level. Thus, recognising differences in the inherent variability of estimates in 

different areas of the risk space might enable the construction of a slightly more nuanced tolerance, allowing more 

latitude where there is greater uncertainty in the underlying data.  

Clearly, there can be many realisations of multivariate risk scenarios which yield very similar results in terms of 

NAV but may exhibit different levels of error. In Figure 9 this is the case for scenarios “Multi61,” “Multi133” and 

“Multi222.” Indeed, for key areas of the loss distribution such as that around the 99.5th percentile we would expect 

concentrations of validation scenarios to have been considered. In these areas therefore the outcome of the 

validation can be considered in the round by looking at the average level of error across the validation points 

within a certain range—this would lead to a pass (average absolute error 10.67) despite the error in “Multi222” 

being a little outside our tolerance.  

The number of validation points to be tested depends on the risk profile and complexity of the business. 

Understandably, the PRA appears keen for firms to test more points as, provided the points are sensibly chosen, 

it’s hard to argue that greater comfort will not be provided by the use of more validation points. Of course, we 

don’t live in an ideal world and there is a price to pay for any such expansion in terms of the increased 

computational load which will drive up processing times and costs. The PRA clearly recognises this though we 

expect them to continue to challenge firms to push the boundaries of what is feasible, particularly in light of the 

move towards “cloud-based” solutions which support targeted high-volume processing.  

3.4.2 Testing for overfitting 

Overfitting occurs when a regression model adheres too closely to the data used in its calibration. The problem is that 

the “signal” is not effectively separated from the “noise” in the fitting data and both are baked into the fitted function. 

Scenario

NAV - Heavy Model 

(£m)

NAV - Proxy Model 

(£m)

Loss 

Distribution 

Percentile

Error

(£m)

Abs Error

(£m)

Tolerance

(£m)

Test 

Outcome

Multi7 376 362 99.80 14 14 15 PASS

Multi61 398 408 99.55 -10 10 15

Multi133 405 410 99.50 -5 5 15

Multi222 430 413 99.45 17 17 15

Univ12 470 477 87.60 -7 7 15 PASS

Bivar4 567 566 66.30 1 1 15 PASS

PASS

Abs Error within tolerance Abs Error outside tolerance 
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When we come to use the model to predict values outside those used in fitting, the noise element obscures the true 

relationships and undermines the predictive power of the proxy model, resulting in elevated estimation errors. 

A relatively simple check involves calculating the R-squared5 regression statistic for both the fitting data and the 

validation data and comparing them. If the R-squared value from the fitting data is markedly higher than that on 

the validation data, then this may indicate overfitting and potential benefit in generating a simpler model.  

With a MCF approach, the comparison is easier as the fitting and validation data are broadly comparable in terms 

of accuracy and volume. This is not the case for LSMC but a technique called k-fold cross-validation can be 

employed as follows: 

 Divide the calibration data into a number (k)6 of equal segments and select one as the “test segment.” Then 

the remaining data forms the “calibration segment.” For example, if running 40,000 outer scenarios, we might 

split the data into 10 x 4,000 segments. 

 Fit the model to the calibration segment data only, 36,000 scenarios in our example here. 

 Evaluate the R-squared and distribution of residuals on both the “test” and “calibration” data segments. 

 Repeat the exercise k times, selecting a different segment as the “test segment” each time. 

The relative performance of the k-fitted models can then be compared to identify any tendency towards 

overfitting. A simple exercise with k = 2 is illustrated in Figure 10.    

FIGURE 10: ILLUSTRATIVE OVERFITTING TEST RESULTS 

 

 

Figure 10 illustrates the results for a with-profit fund and indicates very consistent though slightly poorer-fitting 

performance on the test segment. These results provide comfort that the model has not been overfitted. 

3.4.3 Ranking tests 

One of the attributes required of the internal model is to facilitate the ranking of risks to which the insurer is 

exposed (see article 121(4) of the SII Directive). This was also an area of interest for the PRA, which noted that 

ranking differences “could be important even if it does not materially affect the monetary amount of the SCR at a 

given point in time since it can impair the model’s ability to rank risks and its role in the capital allocation process 

 

5 R-squared of a regression shows the proportion of the variation in the data which is explained by the fitted model. 

6 The value of k used is a matter of user judgement.  

Test Statistic

Calibration Segment

(20,000 outer 

scenarios)

Test Segment

(20,000 outer 

scenarios)

Mean residual 0 £100k (≈0)

SD residuals £38m £39m

R-squared 97.9% 97.8%
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and other Use Test requirements.” Consequently, the PRA encouraged firms to include analysis of the ranking 

performance of the proxy model within the scope of validation activity. 

FIGURE 11: ILLUSTRATIVE RANKING TEST RESULTS 

 

Figure 11 illustrates how a simple ranking comparison might be presented with results ordered by increasing 

NAV from the "heavy" model scenarios. In the illustration, the proxy model ranking has a clear and strong positive 

association with that of the "heavy" model but, in reality, the association will not be perfect. Ordering the rank 

comparison by NAV provides insight on the alignment of ranks across the loss distribution. Finally, computing a 

rank correlation statistic such as Spearman’s rho or Kendall’s tau provides a concise measure of the strength of 

the association that can be compared between fitted models and also tracked over time.  

3.5 IN-SAMPLE TESTS 

Finally, we come to the in-sample tests. In common with most statistical models, the OLS regression used by our 

proxy model is underpinned by a number of idealised conditions. Where these conditions fully hold, the 

parameters (coefficients) fitted are optimal in the sense that they are a best linear unbiased estimator (BLUE) of 

the underlying population values. The aim of many in-sample tests is to establish how well these OLS conditions 

hold in the setting of our real-world application. Where departures occur, it is good to be aware of them as they 

can indicate areas in which improvements can be made in the future. Nevertheless, in our experience, the OLS 

approach is quite robust to modest departures from the idealised conditions and, in a validation context, we 

would not typically countenance rejecting a calibration that had performed very well in the application and 

reasonableness tests solely due to modest departures from the ideal OLS conditions.  

A further point to keep in mind is the nature of the regression exercise being undertaken. In many applications of 

OLS, the whole range of influences on an observed value is unknown and there may be subtle but important 

drivers of the results hidden to the observer. In an insurance context, our use case is to employ the proxy model 

to more simply represent results from another model, the “heavy” model. The influences on the "heavy" model 

are known from the specification of that model—a closed system. The result is that some of the issues that in-

sample tests are designed to flag up simply should be avoided at source by careful model design.   
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The OLS assumptions are: 

1. Linear model: The relationship between our dependent variable (NAV, BEL) and the explanatory 

variables (risk factors) must be capable of being expressed by a “linear in coefficients” model. Such a 

model has the form: 

NAV = a0 + a1R1 + a2R2 + a3R3 + . . . . . . . . . . + anRn + error 

2. Where the ax are the coefficients and the Rx are the basis functions defining the risk factor relationships.  

3. Homoscedasticity: The variance of the residuals (fitting errors) should be invariant across observations. 

4. Exogeneity: The explanatory variables should be independent of the residuals. 

5. No autocorrelation: The residuals should be independent of one another. 

6. No bias: The mean of the residuals should = 0. 

7. No multicollinearity: None of the explanatory variables is a perfect linear function of the others 

8. Normally distributed error terms: Not a strict requirement but helpful when computing certain results 

such as significance values and confidence intervals. 

3.5.1 Linear model 

To test for a linear in coefficients model, we plot the "heavy" model results against those produced by the proxy 

model. In Figure 12, we note that the results are broadly symmetrically distributed around the linear line of best fit 

and that the gradient of that line is very close to 1. These results indicate that our linear model is perfectly 

reasonable in this case. 

FIGURE 12: CHECKING FOR A LINEAR MODEL 

 

Unless there are some very material changes to the regression problem being considered, this is not a test that it 

should be necessary to complete as part of a standard “business as usual” (BAU) validation. 

3.5.2 Homoscedasticity 

The second of the OLS assumptions is that the residuals exhibit constant variance across the range of 

observations. If this assumption does not hold, it may result in undue weight being placed on part of the data and 

impacting the accuracy of the parameter estimates derived.  

There are statistical tests such as the White test which can be used to indicate whether heteroscedasticity is 

present in the calibration data. However, such tests provide a binary answer and do not indicate where any issue 

might lie so they have a limited diagnostic function. A more informative approach can be to undertake a graphical 

analysis plotting the regression residuals against the values of the key risks. A couple of example risks are shown 

in Figure 13.   
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FIGURE 13: CHECKING FOR HOMOSCEDASTICITY 

 

The charts in Figure 13 indicate that Risk A behaves very well while Risk B displays a modest tendency for the 

variance of the residuals to be positively related to the direction of the stress, though this is more marked in the 

downward direction.  

3.5.3 Exogeneity 

Exogeneity requires that there should be no linear relationship between our risk factors and the residuals of the 

regression—the residuals should be random. If this is not the case, then it implies there is something systematic driving 

the behaviour of the residuals which is not included in the specification of our model, i.e., a missing risk factor. 

Examination can be undertaken using the same approach as for homoscedasticity, though in this case we are 

looking for a distinct shape or trend in the results; Figure 13 indicates no such issues. 

Given that our proxy model is approximating the behaviour of another model with known risk factors, careful 

model design should address exogeneity. Testing for this makes sense upon initial implementation and if there 

are subsequent changes to the "heavy" model which may introduce new risk factors. However, absent such 

changes, testing as part of ongoing BAU validation is unlikely to add much value.  

3.5.4 Autocorrelation 

Regression residuals should be independent of one another—there should be no autocorrelation. Again, if this is 

not the case it can indicate a missing explanatory variable, often “time,” as this issue typically arises in the 

context of a time series model. However, a calibration for SII SCR purposes should not involve time series data 

and so this particular issue is unlikely to trouble us. A statistical test, for example the Durbin-Watson test, can be 

undertaken to check for any autocorrelation. Similarly to tests for exogeneity, though, post-implementation 

checks are unlikely to add a lot of value unless the "heavy" model has seen significant change and the additional 

comfort provided by a retest is deemed worthwhile.  

3.5.5 Bias 

The mean of the regression residuals should be zero—no bias. Where an intercept term is included within the 

regression model this requirement should be met by construction.  

3.5.6 Multicollinearity 

Strictly speaking, no risk factor should be included whose behaviour is a linear combination of other risks. More 

broadly though, the regression results can still be adversely impacted if any pair of risk factors has a significant 

correlation between them. If significant correlation is present between variables then the accuracy of the fitted 

coefficients for the impacted risks will be reduced, making it more likely that we will observe material errors in out-

of-sample tests. Furthermore, the proxy model may display significant instability in the modelled relationships for 

the correlated risks whereby small changes in the calibration data lead to disproportionately large changes in the 

derived coefficients, making it difficult to draw robust conclusions about the impact of those individual risks on the 

NAV or BEL. 
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To test the strength of the relationships between risk factors, their correlation matrix can be derived and 

inspected as in Figure 14. 

FIGURE 14: CHECKING CORRELATIONS BETWEEN RISK FACTORS 

 

In Figure 14 we have derived the correlation matrix between Risks A to J implied by the calibration data. 

Inspecting the results we note that the highest absolute off-diagonal result is 0.038 for the (Risk A, Risk F) 

pairing. This very low value provides comfort that the risks included in our model lack any significant linear 

relationships with each other.  

3.5.7 Normally distributed residuals 

This is not a requirement for the OLS method to be applicable, but is a desirable property in that it facilitates the 

more accurate testing of the significance of the fitted model’s coefficients via the calculation of their probability 

values (p-values). This testing can identify whether the fitted model contains parameters which are statistically 

insignificant. The presence of a number of insignificant parameters may indicate an overfitted model or a model 

that can be simplified to some degree without material loss of predictive power.  

Various approaches can be taken to testing for normality: 

1. Create a histogram of the residuals and compare to a normal probability density.  

2. Create a quantile-quantile plot (see Figure 10 above) which compares the ranked normalized values of 

the residuals with the quantile points of a standard normal distribution. This approach generally makes it 

easier than #1 to discern departures from normality. 

3. Calculate the third standard moment (skewness) and fourth standard moment (kurtosis) of the 

distribution of residuals and compare them to the expected values for a standard normal distribution (0 

and 3, respectively). A statistical test can be applied, the Jarque-Bera test, to determine whether the 

observed values are statistically different from the normal distribution. However, this test is quite 

sensitive and it does not take too much of a departure from the normal values to generate a significant 

test result. Using our test data, we found a slightly negative skew around -0.3 and a kurtosis close to 2. 

Based on this, the Jarque-Bera test produced a highly significant result dismissing the null hypothesis 

that the residuals follow a normal distribution. However, the question remains as to how much impact 

this has on any tests of parameter significance.  

  

Risk A Risk B Risk C Risk D Risk E Risk F Risk G Risk H Risk I Risk J

Risk A 1.000 0.017 -0.005 -0.008 0.002 0.038 0.003 0.001 0.001 0.002

Risk B 0.017 1.000 -0.001 0.002 0.000 -0.007 -0.002 0.001 -0.002 -0.001

Risk C -0.005 -0.001 1.000 -0.001 0.003 0.002 0.001 0.000 0.001 -0.002

Risk D -0.008 0.002 -0.001 1.000 -0.001 0.003 -0.001 0.003 0.000 0.002

Risk E 0.002 0.000 0.003 -0.001 1.000 0.000 -0.001 -0.001 0.001 0.001

Risk F 0.038 -0.007 0.002 0.003 0.000 1.000 -0.001 -0.002 0.000 -0.001

Risk G 0.003 -0.002 0.001 -0.001 -0.001 -0.001 1.000 0.004 -0.002 -0.001

Risk H 0.001 0.001 0.000 0.003 -0.001 -0.002 0.004 1.000 0.002 0.002

Risk I 0.001 -0.002 0.001 0.000 0.001 0.000 -0.002 0.002 1.000 -0.002

Risk J 0.002 -0.001 -0.002 0.002 0.001 -0.001 -0.001 0.002 -0.002 1.000
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To explore this a little further, we undertook a standard t-test calculating the p-values of the 200 terms in our fitted 

model. From this, we determined there were seven terms whose significance might be questioned. If terms are of 

low significance, then we might expect them to display higher variation in the coefficient estimates from changes 

to the calibration data set. Returning to the k-fold cross-validation approach we first encountered in section 3.4.2 

above, we amended the approach slightly as follows: 

1. Fit the model on the full data set. 

2. Partition the data set into k segments. 

3. Retaining the model structure (selection of basis functions) from step 1, refit the model coefficients k 

times, excluding a different segment each time.  

4. The result for step 4 is k estimates of the coefficient for each model term. 

5. Consider the extent of variation observed in the estimates—we used the average absolute deviation as 

a proportion of the mean. 

FIGURE 15: CHECKING PARAMETER STABILITY 

 

Our analysis found very low variation in the vast majority of parameters, though we noted seven where the level 

of variation was relatively higher. Checking back to our t-test work, we found the same seven terms had been 

called out by that procedure as having questionable significance. This provides some support that the modest 

departures from normality of our observed residuals has not significantly disturbed the calculation of the p-values, 

at least in a relative sense. 

As a final step, we eliminated the seven terms from the fitted model and tested the impact this had on the out-of-

sample testing. The outcome was a negligible change in results and in fact a very slight deterioration in the R-

squared was noted, indicating there is nothing to be gained by removing these terms. These results provided 

comfort that the overall model selection and calibration were robust. 

4. Organising and presenting the results 
Having explored a range of potential tests in section 3 above, we now consider how all that information can be 

brought together to articulate the validation results and facilitate a decision about whether the current calibration 

is fit-for-purpose or not. 

An obvious point to make is that validation activity has the capacity to generate an awful lot of data and there is 

real risk of information overload. Hence, we believe it is important to divide the tests into a hierarchy of three 

different types, as shown in Figure 16.  
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FIGURE 16: HIERARCHY OF RESULTS 

 

Focusing now on the Core Dashboard, we contemplate the following content: 

 Out-of-sample test results in both table and chart form 

 Overfitting test results from k-fold cross-validation 

 Ranking test results (analysis of top n differences—scenario type, risk factor levels) 

 Parameter stability results from modified k-fold cross-validation—useful monitoring test as adverse changes 

may support the presence of overfitting but also possible introduction of significant correlation between risk 

factors. The latter possibility can be confirmed or eliminated using the correlation test already described. 

 Homoscedasticity—may be worth monitoring for the specific risks prone to this (e.g., interest rate risks) as the 

extent may vary exogenously with financial conditions.  

Figures 17 to 21 illustrate possible content for the Core Dashboard in the context of a single fund using  

MS Power BI. 

FIGURE 17: ILLUSTRATIVE DASHBOARD: OUT-OF-SAMPLE VALIDATION 

 

Reasonableness Tests

Pre Dashboard "hygeine factors"

Always undertaken 

Results must be acceptable to progress to the next stage

Core Dashboard

Principal validation metrics and 

commentary

Always produced

Application tests + possibly very limited number of in-sample tests 

Supplementary Dashboard

Supporting results and 

commentary

Selected in-sample tests produced as required e.g.

Focused - support explanation of a particular feature in the principal results

Broad - retesting of basic attributes to provide comfort following a significant 
model change
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FIGURE 18: ILLUSTRATIVE DASHBOARD: OVERFITTING VALIDATION 

 

FIGURE 19: ILLUSTRATIVE DASHBOARD: RANKING VALIDATION 
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FIGURE 20: ILLUSTRATIVE DASHBOARD: HOMOSCEDASTICITY MONITORING 

 

FIGURE 21: ILLUSTRATIVE DASHBOARD: PARAMETER STABILITY MONITORING 

 

The final task for the validator, having been presented with the results, is to conclude whether the calibration is 

acceptable or not. This is a nontrivial task in itself which requires considerable experience and understanding not 

only of the proxy model calibration but also of the underlying business. Visualisation of results in the form of a 

dashboard provides valuable support, in particular: 

 The ability to easily switch between funds and to compare results across different funds. 

 Being able to compare results over time to examine any developing trends. 

 Drilling down from the Core Dashboard into the lower-level more diagnostic tests to investigate particular 

features observed. 

The final decision requires expert judgement based upon the synthesis of the multiple dimensions of the 

validation results available and full knowledge of the context in which the proxy model is being used.
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