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This paper explores the calibration 

accuracy of three variants of the Libor 

Market Model: the Displaced Diffusion 

Libor Market Model (DD-LMM), and two 

different extensions, namely the DD-

LMM with Constant Elasticity Volatility 

(DD-LMM-CEV), and the DD-LMM with 

Stochastic Volatility (DD-SV-LMM).  

Our study is motivated by a context of an increasing complexity 

of risk-neutral valuation models in the insurance industry, 

combined with a growing regulatory attention on these models. 

As part of the regulatory guidance, e.g., as prescribed in 

Solvency II, there exists a strong requirement on the ability of 

the interest rate model to replicate observed market prices, 

which has been one key driver for the increase of model 

complexity in the insurance practice, especially in terms of 

number of parameters involved.  

We perform a numerical study for a set of different dates and 

currencies by comparing the swaption volatilities extracted from 

the market and targeted in the calibration process, with the 

volatilities obtained from the model simulation. Our two main 

conclusions are as follows: 

1. We show that the most parametrised model (DD-SV-

LMM) is not always the one leading to the better 

replication, and that the less parametrised DD-LMM and 

DD-LMM-CEV models can lead to overall better fits, the 

latter presenting the best results overall. 

2. We demonstrate numerically that this observation can be 

partly attributed to the better quality of the so-called 

freezing approximation involved in the pricing formulas for 

the DD-LMM and the DD-LMM-CEV models, while the 

presence of a stochastic volatility component in the DD-

SV-LMM model can imply larger numerical discrepancies 

in the pricing approximations in some cases. 

 
1 Kemp (2009). Market Consistency: Model Calibration in Imperfect Markets. 

2 Article 6 from Directive Solvency. 

This paper will cover the following topics: 

 Analysis of market conditions for the three dates of interest. 

 Overview of the three variants of the Libor Market Model. 

 Comparison of the market-consistent property of the  

three models. 

 Refinement of the DD-LMM-CEV calibration. 

Market consistency  
A market-consistent value of an asset or liability refers to:  

“...its market value, if it is readily traded on a market at 

the point in time that the valuation is struck, and, for any 

other asset or liability, a reasoned best estimate of what 

its market value would have been had it been readily 

traded at the relevant valuation point.”1 

Market-consistent economic scenarios are at the core of the 

measurement of the Technical Provisions under Solvency II. 

European Insurance and Occupational Pensions Authority 

(EIOPA) guidelines2 states that: 

“The calculation of technical provisions shall make use of 

and be consistent with information provided by the 

financial markets and generally available data on 

underwriting risks (market-consistency).” 

In practice, market consistency is a subtle concept, as the 

perfect replication of all financial market data, including in 

particular prices, implied volatilities (IV) etc., is not possible. 

From a theoretical point of view, assuming standard arbitrage-

free and complete market rules, implies that all market prices 

can be determined under a unique arbitrage-free “risk-neutral” 

probability measure.3 Under such a framework, “risk-neutral” 

models can be calibrated so as to replicate financial market 

prices. Nevertheless, in reality, different sets of options can 

refer to different risk-neutral measures, and no financial model 

can perfectly depict such complexity. In addition, given the   

3 See, e.g., El Karoui et al. (2016) Market inconsistencies of the market-

consistent European life insurance economic valuations: pitfalls and practical 

solutions. For more insights, one can refer to Becherer & Davis (2008). Arrow–

Debreu prices. 
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wide range and variety of quoted options, it is impossible that 

any financial model captures all prices and characteristics with 

a unique set of parameters. Insurers must decide the options 

(type, maturities, tenors, moneyness) they want to embed in 

the calibration process, along with the weights to be applied to 

each of them in the optimisation problem. This choice must be 

well justified,4 and must be relevant with the specificities of the 

insurance products.  

On the other hand, another particularity of market consistency 

for insurance technical provisions valuation lies in the very 

basics of market valuation: the risk-free rate (RFR) per maturity 

as provided by EIOPA:5 

“The risk-free interest rate term structure […] underpins 

the calculation of liabilities by insurance and reinsurance 

undertakings. EIOPA is required to publish the risk-free 

interest rate.“ 

The regulatory curve is slightly different from the traditional 

market swap rates (see the previous technical documentation6) 

and it impacts the ability to assess market prices when using 

usual options valuation closed-form formulas. Indeed, these 

prices are functions of RFR and IV. As a consequence, when 

the RFR differs from the market reference, it is impossible to 

reconcile both option prices and IV as provided by financial 

markets. To this extent, insurers generally (1) use the 

regulatory RFR, (2) consider market IV invariant to the curve, 

or (3) convert volatility quotations into “pseudo-prices” with the 

Black or Bachelier formulas. These prices then constitute the 

model’s calibration targets. 

The rest of this paper is based on the process described in the 

previous paragraph. The comparison of rate models is carried 

out by analysing the replication quality of swaption volatilities, 

which are in practice the preferred calibration tool for insurers. 

Market environment 
In the context of this paper, the study is carried out based on 

at-the-money (ATM) and away-from-the-money (AFM) 

swaptions at three dates, 31 December 2019, 31 March 2020 

and 31 December 2020. For AFM swaptions the 10-year tenor 

is considered because it is generally the most traded tenor and 

as such it constitutes a reference in the insurance industry. 

We plot the market volatility in basis points (bps) against the 

strike for the three different dates: 31 December 2019, 31 

March 2020 and 31 December 2020 for different maturities  

and tenor 10. 

 
4 For more information, see the Milliman White Paper “Neural Network Calibration 

of the DDSVLMM Interest Rates Model, and Application to Weights 

Calculation,” available at https://ie.milliman.com/en-gb/insight/neural-network-

calibration-of-the-ddsvlmm-interest-rates-model. 

FIGURE 1: MARKET SKEW AT MATURITY 4 AND TENOR 10 

 

FIGURE 2: MARKET SKEW AT MATURITY 10 AND TENOR 10 

 

FIGURE 3: MARKET SKEW AT MATURITY 15 AND TENOR 10 

 

  

5 EIOPA BoS-19/408(09/19).  

6 Ibid. 
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The comparison of the swaption implied volatilities between the 

three dates leads to the following observations: 

 At 31 December 2019, we observe a flattening of the 

curve, with a rather strong slope. This flattening represents 

a challenge for the DD-LMM-CEV, which is discussed in 

the following sections. 

 At 31 March 2020, we observe high volatility values, with a 

smile on most maturities. This can be explained by the 

COVID-19 crisis at the beginning of 2020, followed by a 

spike in the implied volatilities. 

 At 31 December 2020, we observe a smile for all 

maturities, more pronounced than at 31 March 2020, but 

with lower values. Compared to 31 March 2020, the 

average reduction in the volatilities is 9.4 bps. 

One relevant criterion to gauge the market consistency of a 

model is its ability to replicate the volatility skew and smiles. 

The DD-SV-LMM can accurately replicate volatility smiles by 

construction thanks to a stochastic volatility process (see part 

modelling interest rates). Nevertheless, the Monte Carlo 

replication of this model might encounter difficulties in 

replicating certain market conditions due to the freezing 

approximations embedded in its calibration. On the other hand, 

the DD-LMM and the DD-LMM-CEV both rely on deterministic 

volatilities processes. As such, they cannot reproduce complex 

smile profiles. However, they allow us to capture skew 

phenomena thanks to a shift and an elasticity parameter (DD-

LMM-CEV only). Further technical details about these models, 

are presented in the next section.  

Libor Market Models 
Over the years, the financial literature has introduced various 

classes of risk-neutral interest rate models, among which are 

the very popular short-rate models. The early 2000s witnessed 

the development of the so-called Libor market models based 

on observable forward rates as opposed to the non-observable 

short rate. Nowadays, these models are widely used by 

insurers, in particular because they provide a good replication 

capability of the market prices. We present in this section the 

three variants of the Libor market model, namely: the Libor 

market model with a displacement coefficient (DD-LMM), the 

Libor market model with a displacement coefficient and 

elasticity coefficient (DD-LMM-CEV) and finally the LIBOR 

market model with a displacement coefficient and stochastic 

volatility (DD-SV-LMM). These three models are available in 

the Milliman CHESS™ economic scenario generator.7  

Let us denote �̃� = 𝐹𝑗(𝑡) + 𝛿 the shifted forward rate where 𝐹𝑗(𝑡) 

defines the forward rate between two consecutive dates and 𝛿 

 
7 More information is available at https://www.milliman.com/en/products/milliman-

chess.  

8 Jaeckel, P. and Rebonato, R. (2002). The link between caplet and swaption 

volatilities in a BGM/J framework: Approximate solutions and empirical evidence. 

the displacement coefficient (shift), allowing the modelling of 

negative rates and capturing skew behaviours. The DD-LMM-

CEV introduces an elasticity parameter 𝛾 to improve skew 

replication while the DD-SV-LMM encompasses stochastic 

volatility following a Cox-Ingersoll-Ross (CIR) dynamics and 

allowing smile replication.  

The general form of the dynamics of the shifted forward 

rates �̃�𝑘 (𝑡) under the k+1 forward neutral measure is, for the 

three models: 

𝑑�̃�𝑘(𝑡) = �̃�𝑘(𝑡)𝛾 × ∑ 𝜁𝑘
𝑞(𝑡) 𝑑𝑍𝑘+1

𝑞

𝑁𝑓

𝑞=1

(𝑡) 

with 𝑁𝑓  ≥ 1 being an integer equal to the number of factors 

in the model, (𝑍 
𝑞)𝑞 ∈⟦1,𝑁𝑓⟧ a multidimensional Brownian 

motion under the K+1 forward neutral measure and 

(𝜻𝑘
𝑞

)
𝑞 ∈⟦1,𝑁𝑓⟧

 the volatility pattern. 

FIGURE 4: LIBOR MARKET MODELS 

 DD-LMM DD-LMM-CEV DD-SV-LMM 

Elasticity 𝛾 = 1 𝛾 > 0 𝛾 = 1 

Volatility 

function 

𝜻𝑘
𝑞(𝑡) is a 

deterministic 

function 

𝜻𝑘
𝑞(𝑡) is a 

deterministic 

function 

𝜻𝑘
𝑞(𝑡) is a stochastic 

function, driven by 

a CIR process 

Number of 

parameters 
7 parameters 8 parameters 9 parameters 

In their original form, the models are not tractable, in particular 

as they do not belong to the class of affine processes. Hence, 

in order to recover classical pricing formulas, an approximation 

called “freezing” is considered. Freezing consists in 

approximating the swap rates dynamics by fixing to their initial 

value some ratios of forward and swap rates, involved in the 

drift of swap rates as well as in the drift of the stochastic 

variance of the DD-SV-LMM. As highlighted by Jaeckel and 

Rebonato (2002)8 and Rebonato (2002),9 the validity of the 

freezing approximations lies in frozen quantities having a small 

volatility, and their expectations being centered around the 

frozen values. As such, this approximation may be less 

accurate when more stochastic sources are embedded in the 

model, such as when a stochastic volatility is captured. Once 

closed-form pricing formulas have been derived, the calibration 

of the parameters is then performed by minimising the distance 

between the market swaption prices and the prices obtained 

from the pricing approximations (so-called model prices).  

9 Rebonato, R. (2002). Modern Pricing of Interest-Rate Derivatives: The LIBOR 

Market Model and Beyond. 

https://www.milliman.com/en/products/milliman-chess
https://www.milliman.com/en/products/milliman-chess
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Calibration and results 
In order to compare the market-consistency properties of the 

DD-LMM, DD-LMM-CEV and DD-SV-LMM models at 31 

December 2019, 31 March 2020 and 31 December 2020, we 

break down the analysis into four steps: 

 Step 1: Comparison of the repricing errors between 

market and Monte Carlo volatilities assessed by  

simulating models and relying on a Monte Carlo pricing  

of the swaptions.  

 Step 2: Analysis of the skew/smile replication. 

 Step 3: Analysis of the freezing error induced by the 

approximations embedded in the calibration process of  

the models. 

 Step 4: Analysis of the calibrated parameters. 

Overall comparison of ATM and  

AFM calibrations  
For each date, we calibrate the DD-LMM, DD-LMM-CEV and 

DD-SV-LMM on the market swaption volatilities. We then 

simulate the models and compute swaption volatilities implied 

from Monte Carlo valuation techniques applied to the 

simulated payoffs. In the following, the corresponding 

volatilities are referred as Monte Carlo volatilities; they are 

compared to the market volatilities by calculating the average 

of the absolute differences. 

The table in Figure 5 shows the average absolute errors between 

at-the-money (ATM) market and Monte Carlo volatilities: 

FIGURE 5: AVERAGE ABSOLUTE ERRORS BETWEEN ATM MONTE CARLO 

AND MARKET VOLATILITIES  

  DATE DD-LMM DD-LMM-CEV DD-SV-LMM 

  31/12/2019 0.0200% 0.0197% 0.0192% 

ATM 31/03/2020 0.0210% 0.0208% 0.0351% 

  31/12/2020 0.0192% 0.0182% 0.0177% 

Note: On each date, the following colour codes are used: green for best result, 

blue for second-best result, orange for worst result. 

For two of the three dates of interest, we notice the DD-SV-LMM 

provides the lower level of calibration error for ATM swaptions, 

which is followed by the DD-LMM-CEV and DD-LMM, with 

overall close values of ATM calibration errors. This ranking 

seems rather intuitive, with the calibration error decreasing with 

the number of parameters available for calibration. As at 31 

March 2020, the DD-LMM-CEV is, however, ranked first, while 

the DD-SV-LMM provides the highest calibration error at this 

same date, which appears as counterintuitive. 

To complete the analysis, the table in Figure 6 shows at the 10 

years tenor the average absolute deviation between away-from-

the-money (AFM) market and Monte Carlo swaption volatilities. 

FIGURE 6: AVERAGE ABSOLUTE ERRORS BETWEEN AFM MONTE CARLO 

AND MARKET VOLATILITIES  

  DATE DD-LMM DD-LMM-CEV DD-SV-LMM 

  31/12/2019 0.0256% 0.0331% 0.0240% 

ATM 31/03/2020 0.0233% 0.0192% 0.0374% 

  31/12/2020 0.0212% 0.0198% 0.0207% 

These results confirm the observations above; the DD-SV-LMM 

exhibits higher calibration errors at 31 March 2020 compared to 

both the DD-LMM-CEV and DD-LMM. In the following, we will 

further analyse the calibration at 31 March 2020, which led to 

relatively high replication errors for the DD-SV-LMM.  

Additionally, we note that the results of the DD-LMM-CEV at 31 

December 2019 highlight some difficulties to reproduce AFM data. 

In the last section below we will dig into this issue and provide 

insights for improvement of the DD-LMM-CEV calibration. 

Comparison of skew replication  
We now compare the smile/skew replication of the three 

models. To this extent the graph in Figure 7 illustrates the 

volatility smile for the swaptions of maturity 10 years and tenor 

10 years, at 31 March 2020. Strikes are displayed in basis 

points (bps) on the x-axis. 

FIGURE 7: SMILE OF ATM MONTE CARLO VOLATILITIES FOR MATURITY 10 

AND TENOR 10 AT 31/03/2020 
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Firstly, this plot emphasises that the DD-LMM-CEV and the 

DD-LMM allow us to capture linear (skew) profiles thanks to 

the shift and the elasticity parameters but we cannot 

reproduce the smile convexity because it relies on 

deterministic volatility processes. 

The DD-LMM-CEV succeeds in reproducing the overall shape 

of the skew, in particular for positive strikes, whereas in 

comparison the DD-SV-LMM seems to overestimate the 

volatility smile for those strikes. Because the very nature of the 

DD-SV-LMM lies in its ability to accurately reproduce complex 

smile profiles, the following will carefully analyse the 

performance of the model calibration to demonstrate that this 

unexpected phenomenon is partly due to the swaption pricing 

approximations involved in the calibration process. 

Analysis of the model volatilities  
The calibration of the DD-LMM, DD-LMM-CEV and DD-SV-

LMM models relies on pricing approximations to compute 

swaption volatilities, referred as model volatilities, based on the 

freezing technique. 

In order to understand the deterioration of the DD-SV-LMM 

Monte Carlo replication at 31 March 2020, the table in Figure 8 

compares the average absolute errors between market and 

model volatilities for both ATM and AFM surfaces.  

FIGURE 8: MEAN OF ABSOLUTE ERROR BETWEEN MODEL AND MARKET 

VOLATILITIES AT 31/03/2020 

  DD-LMM DD-LMM-CEV DD-SV-LMM 

ATM 0.02110% 0.02080% 0.01760% 

AFM 0.02280% 0.01950% 0.0199% 

The average model error is much smaller for the DD-SV-LMM 

in comparison to the Monte Carlo errrors presented in the 

previous sections. This finding is consistent with the fact that 

the DD-SV-LMM embeds more degrees of freedom 

(parameters) in the calibration process. 

To complete the analysis, we plot the absolute differences 

between the model and the Monte Carlo ATM volatilities, 

respectively, for the DD-SV-LMM and the DD-LMM-CEV as a 

comparison basis, which therefore measure the impact of the 

pricing approximations involved in the calibration process and 

the discretisation error (up to simulation error of the Monte 

Carlo estimate). 

FIGURE 9: ATM VOLATILITY ABSOLUTE DIFFERENCE MODEL/MONTE 

CARLO FOR DD-SV-LMM AT 31/03/2020 

 

FIGURE 10: ATM VOLATILITY ABSOLUTE DIFFERENCES MODEL/MONTE 

CARLO FOR DD-LMM-CEV AT 31/03/2020 

  

FIGURE 11: CUT OF THE ATM VOLATILITY ABSOLUTE DIFFERENCES 

MONTE CARLO/MODEL FOR TENOR 1-YEAR AT 31/03/2020 
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For the DD-LMM-CEV, we note that the differences are 

increasing with the tenor. From a theoretical point of view, this 

could be due to the number of quantities frozen in the swap 

rates dynamics (required for swaption pricing) increasing with 

the tenor and implying higher volatility of the frozen quantities. 

This phenomenon appears more clearly focussing on the 1-

year tenor because the swap rates of tenor 1-year are also 

yearly forward rates and as such their dynamics under the DD-

LMM-CEV framework do not use the freezing approximations. 

This observation is not true for the DD-SV-LMM because an 

additional freezing occurs in the stochastic volatility dynamics; 

from this analysis, we can conclude that this is the main source 

of error, because contrarily to the DD-LMM-CEV, the DD-SV-

LMM Monte Carlo volatilities of tenor 1-year significantly differ 

from model volatilities. 

These results highlight that the DD-SV-LMM might encompass 

a higher freezing error than the DD-LMM and that the errors 

between market and Monte Carlo volatilities are partly driven 

by the deterioration of the freezing approximations under the 

31 March 2020 stressed market conditions. On the other hand, 

the less parametrised and deterministic volatility DD-LMM-CEV 

model provides at this date a lower freezing error combined 

with a reasonable model volatility fit, so as a result a more 

robust calibration error involving Monte Carlo volatilities.  

Analysis of the calibrated parameters  
We discuss below the parameters calibrated by minimisation of 

the swaption quadratic deviations, for the DD-LMM-CEV (eight 

parameters) and for the DD-SV-LMM (nine parameters).  

The volatility structure 𝜎𝑘(𝑡) is decomposed into two parametric 

functions. For all 𝑘 ∈ ℕ∗ and for all 𝑡 ∈]𝑇𝑘−1, 𝑇𝑘], 𝜎𝑘(𝑡) =

Φ(𝑡) × 𝑔(𝑇𝑘 − 𝑡) with g a time-to-maturity-depending function so 

that, for all 𝑢 ∈ ℝ+, 𝑔(𝑢) = (𝑏𝑢 + 𝑎) × 𝑒−𝑐𝑢 + 𝑑 (Rebonato form). 

The parameters a, b, c and d drive the shape of the forward 

volatility function for all models at a given time.  

Φ is a time-depending scaling factor deterministic for the DD-

LMM-CEV whereas it is stochastic and ruled by a CIR process 

for the DD-SV-LMM. Compared to DD-LMM-CEV, the scaling 

function of the DD-SV-LMM relies on two additional parameters; 

𝜖, which drives the volatility of volatility, and 𝜌, which drives the 

correlation with stochastic volatility. 𝜽 is the asymptotic scaling 

level and 𝜿 is the convergence speed towards 𝜽. 

It is interesting to note that the Rebonato form parameters are 

relatively close for the two models. At 31 March 2020, we also 

remark that, for the DD-SV-LMM, the volatility of the volatility 𝜖 

doubles and that the CIR long-term average of the variance 

diverges more significantly from its initial state (Φ(0) = 1), 

which implies a greater variability of the stochastic variance 

process that is likely to increase the skew of the forward 

distributions as described in the table in Figure 12. 

FIGURE 12: CALIBRATED EPSILON OF DD-SV-LMM 

  31/12/2019 31/03/2020 31/12/2020 

𝝐 24% 49% 22% 

𝜿 13% 60% 5% 

𝜽 32% 26% 43% 

Recall that the quality of the freezing approximations lies in 

frozen quantities having a small volatility, and their expectation 

being centered around the frozen values. The spike in the 

variability of the stochastic variance process at 31 March 2020 

challenges these two assumptions and deteriorates the 

robustness of the freezing approximations of the DD-SV-LMM, 

especially regarding the freezing considered in the stochastic 

volatility dynamics. 

Eventually, these calibrations suggest a relationship between 

the shift and the elasticity parameters of the DD-LMM-CEV. We 

will explore this empirical finding in the next section in order to 

improve the calibration of the model. 

Alternative method of calibration for 

DD-LMM-CEV  
In light of the previous DD-LMM-CEV calibration results, we 

aim at empirically establishing a linear link between the shift 

and the elasticity. To this extend, for each date (31 December 

2019, 31 March 2020 and 31 December 2020), we perform 100 

calibrations of the DD-LMM-CEV for different elasticity and shift 

initialisations in the numerical optimisation routine. The graphs 

in Figures 13 to 15 present the resulting calibrated elasticity 

parameters in terms of the calibrated shift parameters. 

FIGURE 13: CALIBRATED ELASTICITY (Y-AXIS) IN TERMS OF THE 

CALIBRATED SHIFT (X-AXIS) AT 31/12/2019 
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FIGURE 14: CALIBRATED ELASTICITY (Y-AXIS) IN TERMS OF THE 

CALIBRATED SHIFT (X-AXIS) AT 31/03/2020 

 

FIGURE 15: CALIBRATED ELASTICITY (Y-AXIS) IN TERMS OF THE 

CALIBRATED SHIFT (X-AXIS) AT 31/12/2020 

 

We note that there is an approximate linear relationship 

between the shift and the elasticity as at 31 December 2019, 

31 March 2020 and 31 December 2020. For information the 

regression 𝑅2 are, respectively, 0.9382, 0.9714 and 0.9459.  

In order to improve the 31 December 2019 DD-LMM-CEV AFM 

calibration, we recalibrate the model considering the initial 

elasticity value (starting point set within the optimisation 

routine) determined with the linear function estimated at 31 

December 2019. The table in Figure 16 compares the average 

absolute errors between market and Monte Carlo volatilities for 

both ATM and AFM surfaces. 

FIGURE 16: MEAN OF ABSOLUTE ERROR BETWEEN MONTE CARLO AND 

MARKET VOLATILITIES AT 31/12/2019 

  DD-LMM DD-LMM-CEV DD-SV-LMM 

ATM 0.02000% 0.01990% 0.01920% 

AFM 0.02560% 0.02350% 0.024% 

We note that the AFM error of the DD-LMM-CEV is greatly 

reduced (formally 0.0331%), becoming even better than that of 

the DD-SV-LMM without deteriorating the ATM error. This 

analysis points out the importance of the elasticity choice for 

the improvement of the DD-LMM-CEV calibration stability. 

Conclusion 
To conclude, the most parametrised model (DD-SV-LMM) is 

not always leading to the better replication in times of stressed 

market conditions (such as 31 March 2020), as the increase in 

the volatility is likely to deteriorate the quality of the 

approximations made for its calibration. On the other hand, this 

paper highlights the potential of the DD-LMM-CEV model, 

showing an interesting trade-off between the number of 

parameters available for calibration and the quality of the 

pricing approximations involved. Still, it is worth noticing that 

the elasticity coefficient must be carefully determined in order 

to recover satisfactory calibration results; as such, this paper 

has introduced a promising technique to set the starting point 

of the optimisation procedure for the elasticity parameter as a 

function of the displacement factor. 

If you have any questions or comments on this paper or any 

other aspect of economic scenario generation, please contact 

your local Milliman consultants or the contact links below. 
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